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Mental Imagery for a Conversational Robot
Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis

Abstract—To build robots that engage in fluid face-to-face
spoken conversations with people, robots must have ways to
connect what they say to what they see. A critical aspect of how
language connects to vision is that language encodes points of view.
The meaning of my left and your left differs due to an implied shift
of visual perspective. The connection of language to vision also
relies on object permanence. We can talk about things that are
not in view. For a robot to participate in situated spoken dialog, it
must have the capacity to imagine shifts of perspective, and it must
maintain object permanence. We present a set of representations
and procedures that enable a robotic manipulator to maintain a
“mental model” of its physical environment by coupling active
vision to physical simulation. Within this model, “imagined” views
can be generated from arbitrary perspectives, providing the basis
for situated language comprehension and production. An initial
application of mental imagery for spatial language understanding
for an interactive robot is described.

Index Terms—Active vision, grounding, language, mental im-
agery, mental models, mental simulation, robots.

I. SITUATED LANGUAGE USE

I N USING language to convey meaning to listeners, speakers
leverage situational context [1], [2]. Context may include

many levels of knowledge ranging from the details of shared
physical environments to cultural norms. As the degree of
shared context decreases between communication partners,
the efficiency of language also decreases since the speaker is
forced to explicate increasing quantities of information that
could otherwise be left unsaid. A sufficient lack of common
ground can lead to communication failures.

If machines are to engage in meaningful, fluent, situated
spoken dialog, they must be aware of their situational context.
As a starting point, we focus our attention on physical context.
A machine that is aware of where it is, what it is doing,
the presence and activities of other objects and people in its
vicinity, and salient aspects of recent history, can use these
contextual factors to interpret natural language.

In numerous applications of spoken language technologies
such as talking car navigation systems and speech-based control
of portable devices, we envision machines that connect word
meanings to the machine’s immediate environments. For ex-
ample, if a car navigation system could see landmarks in its
vicinity based on computer vision, and anchor descriptive lan-
guage to this visual perception, then the system would have a
basis for generating contextually appropriate directions such as
“Take a left turn immediately after the large red building.” Con-
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sider also an assistive service robot that can lend a helping hand
based on spoken requests from a human user. For the robot to
properly interpret requests such as “Hand me the red cup and put
it to the right of my plate,” the robot must connect the meaning
of verbs, nouns, adjectives, and spatial language to the robot’s
perceptual and action systems in a situationally appropriate way.

Our current work is part of a larger effort to develop a con-
versational interface for an interactive robot (see also [3]–[6]).
The development of such a robot is of practical interest in do-
mains ranging from space exploration (e.g., [7]) to assistive aids
(e.g., [8]). Furthermore, we believe that lessons learned from de-
veloping robotic interfaces may have impact in numerous other
natural language processing domains.

A necessary step toward creating situated speech processing
systems is to develop representations and procedures that en-
able machines to ground the meaning of words in their physical
environments. In contrast to dictionary definitions that repre-
sent words in terms of other words (leading, inevitably, to cir-
cular definitions), grounded definitions anchor word meanings
in nonlinguistic primitives. Assuming that a machine has access
to its environment through appropriate sensory channels, lan-
guage grounding enables machines to link linguistic meanings
to elements of the machine’s physical world.

Interest has grown in the computational representation and
acquisition of word meaning grounded in vision [9]–[18] and
motor action [19]–[21]. This line of research, in addition to
making contributions to theoretical aspects of lexical seman-
tics and cognitive modeling, has practical relevance for building
situated human-machine communication systems. A limitation
of this previous work, however, is the assumption of a fixed,
first-person visual frame of reference.

Our approach departs from the assumption of camera-
grounded fixed perspective by introducing an implemented
model of mental imagery driven by active vision. Mental
imagery enables grounding of spatial language that cannot be
handled under fixed-perspective assumptions. To understand
the difference between behind me and behind you, the listener
must factor points of view into the language comprehension
process. Speakers must similarly take into account listeners’
points of view to produce clear, unambiguous language.
Simpler solutions such as in-plane rotation of images to
correct for perspective will not work in general, since full
three-dimensional (3-D) changes of perspective are required
in many situations. Furthermore, mental imagery enables
anticipation of visual occlusions which are view dependent and
cannot be predicted through image rotations. Our approach
also introduces object permanence so that language can bind to
objects that are not in direct view of the system’s camera. As a
result, the system can understand and generate language about
objects which are not physically in the camera’s sight.
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We first introduce our notion of mental imagery and its role in
language use. We then present details of an implementation of
a computer vision driven mental model that is used to generate
mental imagery. We conclude by presenting an application of
language understanding grounded in mental imagery. Although
we build on earlier work on visually-grounded language cited
above, this work makes a significant departure by defining a
new way to connect language and vision that is better able to
address the needs of situated language processing.

II. MENTAL MODELS AND MENTAL IMAGERY:
WHERE LANGUAGE AND VISION MEET

A key aspect of human perception is that it is active. We
cannot move without affecting our senses, and in order to per-
ceive, we must coordinate our movements. In the realm of visual
perception, movement of the head and body leads to apparent
motion in the visual field, and the appearance/disappearance of
objects from the field of view. Yet, we are able to conceptualize
the world as stable, maintain object permanence in the face of
appearances and disappearances, and differentiate self-motion
from motion in the environment.

We adopt the term mental model to refer to the conceptual
structures that represent a stabilized version of reality, essen-
tially a “cache” of the external world as projected through the
observer’s perceptual system. The idea of mental models is well
established in the cognitive science literature (cf. [22]) although
it is more typically used to describe offline cognitive processes
where perception is not directly driving the construction and up-
dates of the mental model. In our approach, perceptually driven
mental models provide a level of abstraction above low-level vi-
sion that is appropriate for connecting to language (along these
lines, see also [23]).

We also adopt the term mental imagery to refer to images that
are generated by imagining viewpoints within a mental model.
The Stanford Encyclopedia of philosophy [24] defines mental
imagery as: Experience that resembles perceptual experience,
but which occurs in the absence of the appropriate stimuli for
the relevant perception [25], [26]. Very often these experiences
are understood by their subjects as echoes or reconstructions
of actual perceptual experiences from their past; at other times
they may seem to anticipate possible, often desired or feared,
future experiences.

Our use of the term extends this definition since we are con-
cerned with representations and processes that are active during
actual perceptual experience. We choose to use the same term
for both cases based on our intuition that many of the same pro-
cesses used for online perception are also used for offline recon-
struction and reasoning (see [27], [28] for psychological argu-
ments in support of this view).

Language refers to the stabilized conceptualization of the
world provided by mental models and imagery – we do not talk
of objects as being in motion when we know that the apparent
motion was caused by our own movements. We also talk about
objects that are out of view if we are certain of their location.
Moreover, spatial language in situated dialogs assumes a
point of view that will depend on how the speaker decides to
express herself. Perspective taking has long been studied in

psychology, leading to a large literature on the subject including
the developmental studies of Piaget [29]. Tversky provides a
useful taxonomy of spatial thinking [30]. In her analysis, basic
kinds of frames of reference that humans use to conceptualize
space include space of the body (body parts), space around the
body, and the space of navigation. Here, we primarily address
computational representations of space around the body of a
robot. The ability to shift perspectives is also related to aspects
of space in navigation, although verbal interaction with a
mobile robot (e.g., [31]) addresses the latter more directly.

Using Miller and Johnson–Laird’s terminology [32],
speakers may assume a first-person deictic frame of reference
(e.g., “on my left”), or alternatively an intrinsic perspective
(e.g., “on your left” or “in front of the house”). Intrinsic expres-
sions occur when spatial terms are used to indicate positions
relative to entities that have intrinsic parts (e.g., houses have
fronts and backs) and may thus serve as the basis for spatial
frames of reference. One way for a listener to interpret the
meaning of deictic references, and the approach that we have
explored in our computational model, is to use mental imagery
to visualize the shared scene from the speakers point of view,
and within this shifted frame, interpret spatial expressions. In
other words, the phrase “on my left” is decomposed into two
parts, “my,” and “on – left”. The “my” part triggers a shift of
perspective to the speaker’s point of view. Similar strategies can
be used within this framework to shift perspectives according
to intrinsic frames of reference.

Imagining how a shared environment looks from another’s
perspective is often crucial to effective communication. If an
object is in view to speaker , but not listener , should take
this factor into account when referring to the object. If knows
that cannot see an apple because it is behind a basket, might
say “the apple behind the basket” rather than just “the apple”. If
the apple is in view to both parties, the former description would
seem odd since it specifies unnecessarily redundant details.

To summarize, language cannot be grounded directly in
first-person visual representations. Language must instead be
grounded through some other representational layer which
provides a stable view of the environment in spite of self-mo-
tion. This middle ground also enables speakers and listeners to
imagine each other’s point of view, a necessary precondition
for natural situated spoken dialog.

With this motivation in mind, we present an architecture for
actively constructing mental models.

III. PHYSICAL EMBODIMENT: RIPLEY

Our current experiments are based on a robotic manipulator
named Ripley (Fig. 1). Ripley has seven degrees of freedom
(DOFs), enabling it to manipulate objects in a three-foot radius
workspace. The robot may be thought of as an articulated torso
terminating with a head that includes its “mouth” (a one DOF
gripper).

Ripley has been designed to explore situated, embodied
spoken language use. In contrast to our previous robots [13],
[33], Ripley is able to use its gripper to manipulate small
objects, paving the way for grounding verbs related to ma-
nipulation actions. The robot’s range of motions enable it to
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Fig. 1. Ripley hands an apple to its human communication partner in response
to the phrase “Hand me the thing on your left.”

examine objects through vision and touch. Ripley is also able to
look up and make “eye contact” with its human communication
partner. This behavior plays a functional role since Ripley
must keep track of the position of the partner in order to
understand relative spatial reference. Eye contact is also, of
course, important for engaging in natural face-to-face dialog.

Most of Ripley’s sensors are in its head, including two color
video cameras, two microphones, touch sensors, and an iner-
tial sensor for gravity. Additional proprioceptive (position and
force) sensors are placed on each joint. In our current work, only
one of the cameras is used for visual input.1 The placement of
the camera on the mouth simplifies grasping since visual ser-
voing can be used to guide the gripper to objects. However, the
placement also leads to constant changes in the robot’s field of
view since any motion of the torso affects the camera. For this
reason, Ripley provides an excellent platform for developing
mechanisms for mental imagery.

Low-level motor control is achieved by computing trajecto-
ries of target joint configurations. An elastic force model loosely
inspired by motor force fields in biological motor control [34]
is used to provide compliant motion control [20]. Higher level
motor control directives are issued from a planning mechanism
that is driven by task specific criteria.

Low-level visual processing relies on color-based separation
of objects from a known (fixed) background (the image pro-
cessing methods are described in [33]). The vision system gen-
erates a set of foreground regions at a rate of 15 Hz. These re-
gion sets are passed to an object permanence module which inte-
grates region sets over time to determine the presence and prop-
erties of objects in the scene. As we describe in the next sec-
tion, the object permanence module uses the robot’s joint con-
figurations to compensate for view points in order to maintain
a view-independent model of object locations. A face detector
[35] searches for faces in the visual field. Faces are treated spe-
cially, leading to a model of the communication partner’s loca-
tion in the robot’s mental model.

1In ongoing work, we are introducing depth perception based on stereo visual
input.

Fig. 2. Architectural overview: Active vision drives the construction and
maintenance of a mental model. Synthetic mental images from the mental
model are linked to language.

IV. MENTAL MODEL AND MENTAL IMAGERY

As we move around our direction of gaze, objects come in
and out of sight, but our conception of objects remains stable.
Fig. 2 provides an overview of Ripley’s mental model and im-
agery architecture that registers and stabilizes sensory data from
the robot’s moving camera. We begin with an overview of the
architecture. Subsequent sections highlight technical details of
the implementation.

Ripley’s camera provides a constant stream of images to the
image processor. The image processor finds foreground regions
(typically corresponding to the location of objects on the
robot’s work surface) and face locations which are relayed, at
the 15-Hz frame rate, to a registration and stabilization module.
This module constructs and maintains a 3-D model of objects
in the environment. The robot’s joint configuration is used to
perform projective transforms on incoming images so that a
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3-D model can be created out of multiple two-dimensional
(2-D) views.

The mental model is a 3-D model consisting of a set of rigid
body objects, and represents Ripley’s belief of the state of the
world. The registration and stabilization module acts as a so-
phisticated hysteresis function to smooth sensory data. Persis-
tent perceptual evidence for the presence, movement, or disap-
pearance of objects drives updates in the mental model.

A physical dynamics estimator is used to provide predictions
of where objects should be in incoming image frames, given
the current state of the mental model and knowledge of New-
tonian physics. This predicted model is used to align perspec-
tive-dependent camera image regions with the contents of the
3-D mental model. The contents of the mental model can be
used to generate synthetic images using a synthetic camera and
standard projective computer graphics techniques.

The language processor receives these synthetic images as a
basis for grounding semantics. The language processor has con-
trol over the position and orientation of the synthetic camera.
To interpret spatial language, the synthetic camera can be posi-
tioned to simulate either the robot’s or the human partner’s point
of view.

A. Representation of Mental Model State

The physical environment is modeled by a set of rigid 3-D
objects which includes: 1) a model of Ripley’s own body; 2) a
built in model of the workspace table; 3) a physical model of the
human communication partner’s body; and 4) objects situated
on the work surface. The complete state of the mental model is
captured at any moment by the descriptions of all objects. Each
object in the model is fully described by its position, orienta-
tion, shape, color, mass, and velocity. The self-model consists
of a set of four cylindrical blocks connected by swivel joints to
approximate the shape and range of positions of the physical
robot. The physical model of the human partner is currently a
simple sphere which is used to position synthetic cameras to ob-
tain the human’s point of view.

B. Dynamic Prediction

The open dynamics engine (ODE) rigid body dynamics sim-
ulator [36] is used to predict future states in the mental model.
ODE is an open source Newtonian physics simulator that oper-
ates on 3-D rigid body models. At a rate of 10 Hz, the state of
the mental model is copied into ODE, ODE is executed to gen-
erate a prediction for the next time step, and this predicted state
is integrated with perceptual evidence from Ripley’s camera and
joint sensors to update the state of the mental model (see below).
ODE thus provides two main functions within our system: col-
lision detection and dynamics simulation.

C. Ripley’s Physical Self-Model

The model of the robot’s body is controlled by a simulated po-
sition-derivative motor controller similar to the controller used
in the physical robot. At each update cycle in the model, joint an-
gles of the virtual robot are compared to the angles of the phys-
ical robot. For each joint, if the difference in angles is greater
than a preset threshold, then an appropriate force is applied

Fig. 3. Ripley looks down at the tabletop with four objects in view.

Fig. 4. Visual regions and corresponding simulated objects in Ripley’s mental
model corresponding to the view from Fig. 3. The white ellipses in the left image
indicate the output of the region analysis routines of the vision system. The
objects in the simulator on the right are actually spherical, but appear elliptical
due to optical warp of the synthetic viewpoint generated by the simulator.

to align the corresponding virtual joint. In effect, the virtual
joint tracks the associated DOF of the physical robot. Since
only angle differences above a threshold lead to virtual forces,
low-level jitter in the physical robot is attenuated in the mental
model.

D. Coupling Active Vision to the Mental Model

A primary motivation for developing the mental model
is to register, stabilize, and track visually observed objects
in Ripley’s environment. To address these needs, an object
permanence module, called the Objecter, bridges the incoming
stream of input from the image analysis module to the contents
of the mental model (for other approaches to perceptually
coupled simulation, see [37]–[39]). When an image region is
found to stably exist for a sustained period of time, an object is
instantiated by the Objecter in the mental model. The color and
position of the object are determined from the visual input. It
is only at this point that Ripley becomes “aware” of the object
and is able to talk about it. If Ripley looks away from an object
so that the object moves out of view, a representation of the
object persists in the mental model. When a physical object
is removed from Ripley’s workspace, persistent perceptual
evidence of its disappearance causes the object to be deleted
from the model.

Fig. 3 shows an example of Ripley looking over its workspace
with four objects in view. In Fig. 4, the left image shows the
output from Ripley’s head-mounted camera, and the right image
shows corresponding simulated objects that have been regis-
tered and which are being tracked.
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The Objecter consists of three components: a 2-D-Objecter,
3-D-Objecter, and 2-D-to-3-D resolver. The 2-D-Objecter
tracks 2-D visual regions generated by the vision system.
The 2-D-Objecter implements a hysteresis function which
detects 2-D visual regions that persist over time, and resolves
intra-frame region correspondences, assigning unique IDs to
persistent regions. The 2-D-to-3-D resolver module follows,
which calculates the position and pose of prospective 3-D
objects, based on the persistent 2-D regions it is fed. Due to
a lack of depth information, the resolver relies on projective
geometry and the assumption that objects are in contact with
Ripley’s table. The 3-D-Objecter brings the prospective 3-D
objects into correspondence with those already existing in the
mental model, and decides whether and how to create, update
or delete objects in the mental model.

As Ripley moves (and thus changes its vantage point), the
2-D-Objecter continues to track visual regions until they leave
the field of view. However, updates to the 3-D mental model
are not performed while Ripley is in motion. This simplifies the
process of tracking objects and leads to greater model accuracy.
Overall, as a coupled pair, the 2-D and 3-D Objecter maintain
correspondence of objects across time, enabling tracking and
object persistence in spite of perceptual gaps, noise, and spatial
reorderings of the objects.

More precisely, the output of the image processing
module at each time step is a set of visual regions,

. In general, the ordering
of regions within is arbitrary since the vision system finds
regions in each frame of video independent of knowledge of
previous frames. Thus, there is no guarantee that will
correspond to .

To obtain correspondence of regions over time, the 2-D-Ob-
jecter maintains its own set of regions which are candidates for
being output to the 3-D-Objecter. We denote the candidate re-
gion set as . The purpose of
the 2-D-Objecter is to maintain correspondence between
and . To maintain region correspondence, we define a
tunable distance metric between two visual regions as

(1)
where is the Euclidean distance between the centroids of
the regions, is the difference in size (number of pixels) of
regions, and is the difference in average RGB color of the
regions. The tuning parameters and are scalar values such
that . They are used to set the relative emphasis of
the position, size, and color properties in comparing regions.

When Ripley moves to a new vantage point, the 2-D-Objecter
candidates are initialized by copying the output of the vision
system ( ) so that a candidate is created corresponding
to each region in the current visual analysis frame. A confi-
dence value, conf, is assigned to each candidate and ini-
tialized to 0. At each successive time step, a new region set is
generated by the vision system. The 2-D-Objecter attempts to
put each region in into one-to-one correspondence with each
candidate in such that the total distance using (1) between
paired regions is minimized. In general, the number of visual
regions and 2-D-Objecter candidate regions will not be

equal. The alignment process aligns the subset of
regions. After the optimal alignment is found, only those whose
distances resulting from the match are below a maximum allow-
able distance threshold are accepted. The confidences of can-
didate regions that are aligned to regions from are updated
(increased) using a rule similar to an infinite impulse response
filter, assuming positive input of unit magnitude. Thus, confi-
dence values never reach an upper bound of 1.0. If , at
most ( ) new candidates are instantiated in the 2-D-Ob-
jecter, each with confidence set to 0. If , then the con-
fidence of, at minimum, ( ) unaligned candidate regions
is updated (decreased) by a similar rule, driven by a negative
input of unit magnitude. At the end of this alignment and con-
fidence update process, the properties of the matched or newly
instantiated regions from the 2-D are copied into . The un-
matched candidate regions retain their previous properties, and
any of them for which conf are destroyed.

The output of the 2-D-Objecter at each time step is the subset
of candidate regions for which the confidence level is greater
than Conf . In the current implementation Conf .
Each newly instantiated candidate region is assigned a unique
ID. These IDs are persistent over time, thus implementing re-
gion tracking. Smoothly moving objects are tracked by the 2-D-
Objecter. When an object is removed from a scene, the con-
fidence value of the corresponding candidate region will start
dropping from the maximum value of Conf . As soon as the
confidence drops below Conf , it stops being output. This
use of confidence values and thresholds implements a hysteresis
function that requires persistent visual evidence before either in-
stantiating or destroying regions.

The 3-D-Objecter uses projective geometry to infer the posi-
tion of objects in 3-D space based on 2-D regions. Given the
position and orientation of Ripley’s camera, the 2-D regions
are linearly projected in 3-D until the projection lines inter-
sect Ripley’s work surface. The location of the surface, a round
tabletop, is built into the initial state of the mental model. Thus,
Ripley’s perceptual input is not necessary for establishing the
presence of the table.

Interaction between the 2-D- and 3-D-Objecter proceeds as
follows. Each time Ripley moves, the 3-D-Objecter ignores
output from the 2-D-Objecter, and when Ripley stabilizes its
position, the 3-D-Objecter waits 0.5 seconds to ensure that the
2-D-Objecter’s region report is stable, and then resumes 3-D
processing. When the 3-D-Objecter processes a 2-D region set,
it projects each region to a corresponding 3-D object location.
Then, the projected objects are then placed into correspondence
with existing objects in the 3-D mental model. To compare
projected and existing objects, a modified version of (1) is used
in which measures 3-D Euclidean distance, and mea-
sures size. The same alignment process as the 2-D-Objecter is
used to align projected objects to existing objects in the mental
model. If projected objects have no existing counterparts in
the simulator, new objects are instantiated. Conversely, if an
object exists in the mental model but no corresponding object
has been projected based on visual evidence, then the object in
the mental model is destroyed. There is no hysteresis function
required in the 3-D-Objecter since all 2-D regions have already
passed through a hysteresis function in the 2-D-Objecter.
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E. Inferring Force Vectors From Vision

In the process of updating the position of moving objects, the
3-D-Objecter must infer the magnitude and direction of forces
which lead to observed motions. Inference of force dynamics
has been argued to be of fundamental importance in grounding
verb meanings [40]. We now explain how forces are inferred
from visual observation in the Objecter.

Consider a situation in which an object, such as a ball, is
on the workspace and in view. Once the 2-D-Objecter has
registered the corresponding region, it will relay the region
to the 3-D-Objecter which will instantiate an object in the
mental model. At this point, Ripley is aware of the ball. Now,
assume the ball begins to slowly roll. Although the visual
region corresponding to the ball will be displaced from one
time step to the next, the 2-D-Objecter will generally determine
the correspondence between regions over time steps and
thus track the object. After the correspondence process has
been run by the 3-D-Objecter, a displacement in positions
between projected and existing objects in the simulator must
be accounted for. This is where the force inference step takes
place. A force proportional to the displacement and in the
direction of the projected object is applied within ODE to the
corresponding object. As the object accelerates (decelerates),
the inferred forces will be increased (decreased) accordingly.
To summarize, in the process of tracking objects, the Objecter
also generates a constant stream of inferred forces acting on
each object to account for their changes in velocity. These force
vectors may be used to classify self-moving objects, and other
aspects of force dynamics.

F. Generating Images Within the Mental Model

The mental model is integrated with a 3-D graphics rendering
environment [41]. The 3-D environment may be rendered from
an arbitrary viewpoint by positioning and orienting a synthetic
camera and rendering the scene from the camera’s perspective.
Changes in placement of the synthetic camera are used to im-
plement shifts in perspective without physically moving Ripley.
Fig. 5 shows an example of a synthetic view of the situation also
depicted in Figs. 3 and 4. Words with visually referential seman-
tics (blue, ball, left, etc.) are grounded in terms of features ex-
tracted from these synthetic “mental images.” As we shall see,
we can ground spatial phrases such as my left as a combination
of a shift of perspective combined with a visually grounded spa-
tial model.

V. SITUATED SPEECH UNDERSTANDING AND GENERATION

GROUNDED IN MENTAL IMAGERY

The mental model and mental imagery provide Ripley with
object permanence and imagined perspective shifts, enabling
new forms of human-machine dialog. As a first exploration into
its use, we have integrated the architecture into a dialog system
that supports early forms of spoken dialog with Ripley. This in-
tegrated system consists of several components including a sen-
sorimotor grounded lexicon, a speech recognition and robust
parser, grounded semantic composition procedures, and visu-
ally driven language generation procedures. Although complete
descriptions of these modules is beyond the scope of this paper,

Fig. 5. By positioning a synthetic camera at the position approximating the
human’s viewpoint, Ripley is able to “visualize” the scene from the person’s
point of view, which includes a view of Ripley.

we briefly sketch salient aspects of each module so that the ap-
plication of the mental model and imagery may be presented.

A. Grounded Lexicon

A central component of the system is a grounded lexicon that
defines the meaning of words in terms of richly structured sen-
sorimotor representations. In essence, these structures model the
meaning of words in terms of their correspondences to percepts,
actions, and affordances [42].

B. Verbs = Sensorimotor Networks (SNs)

The meaning of manipulation verbs (lift, pick up, touch) are
grounded in SNs (a closely related approach can be found in
[21]). SNs can be used to execute actions on the robot (in that
sense, they may be thought of as plan fragments), but they also
serve as a representational substrate for the semantics of verbs,
and modifiers that are linked to verbs.

A SN is defined by a linked set of perceptual conditions
and motor primitives. Fig. 6 shows the SN for pickup. Percep-
tual conditions are indicated by rectangles, motor primitives by
circles. Verbs expect a single argument , the patient of the
verb.2 The main execution path of this SN is a single alternating
sequence of perceptual conditions and motor primitives. The
pickup SN may be interpreted as: 1) ensure is in view; 2) ex-
tend head until is visually looming (recall that Ripley’s cam-
eras are mounted next to the gripper); 3) grasp with the gripper
until the gripper touch sensors are activated; and finally 4) re-
tract. Errors can be sensed at each perceptual condition. The de-
fault behavior on all errors is to retry the previous motor action
once, and then give up. All SNs terminate in either a success or
failure final state.

C. Modifiers = Sensorimotor Expectations

Modifiers such as color, shape, and weight are defined with
respect to an underlying SN. Fig. 7 illustrates the representa-
tion of heavy and light. This structure captures the common-
sense notion that something is heavy if it is difficult to lift. The

2In ongoing work, we are expanding our formalism to accept agents, instru-
ments, and manner arguments.
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Fig. 6. A SN that encodes the semantics of pickup.

Fig. 7. The meaning of heavy and light are grounded in expected resistance
measurements while lifting an object.

SN (bottom) grounds the meaning of lift. The dashed line indi-
cates a projection function that projects the execution of an SN
into a low dimensional feature space. In this case, the projection
function accumulates joint forces during the execution of the
retract motor primitive, effectively weighing the patient of lift.
The meaning of heavy and light are grounded as distributions of
expected values with respect to this projection of the underlying
SN. These distributions are referred to as activation functions.
To determine how well a word fits an object, the SN underlying
that word must be executed and projected using the associated
projection function. The activation function associated with the
word is evaluated at the projected point to determine how well
the word fits the object. Since activation functions are contin-
uous, all scores are continuously graded.

Categorical distinctions (e.g., determining whether an object
is blue or not, as a binary decision) are made using a simple
voting mechanism. Within a feature space, the most activated
function determines the category label of the object.

The grounding of color terms closely parallels weight terms
(Fig. 8). In place of lift, color terms are defined in terms of the
SN associated with lookat, which, when executed, causes Ripley
to center the object in the robot’s visual field. The projection
function computes the average value of color in all pixels of
the visual region corresponding to the object. Color terms such
as green and orange are defined as 2-D Gaussian distributions
within this projected feature space.

Shape descriptors are grounded using histograms of local
geometric feature, described in [43]. The histograms are

Fig. 8. The meaning of green and orange are grounded in expected
distributions of context-normalized color space measured by looking at an
object.

generated using a projection function defined in terms of the
same SN as color terms (lookat).

D. Spatial Relations and Perspective Shifting

To ground spatial words (e.g., above, to the left of) in our past
work with 2-D virtual worlds (cf. [14]), we have used Regier’s
set of three spatial features [11], which take into account the
relative shape and size of objects. The first feature is the angle
(relative to the horizon) of the line connecting the centers of
area of an object pair. The second feature is the shortest distance
between the edges of the objects. The third feature measures
the angle (relative to the horizon) of the line which connects
the two most proximal points of the objects. Spatial relations
such as above and left of are defined as Gaussian distributions
in terms of these three features. To apply a spatial relation, two
objects must be identified, the target and the landmark. The two-
argument structure associated with spatial terms is encoded in
the speech parser as described below.

Since Ripley’s mental model is 3-D, we use projective trans-
forms to capture 2-D views of the mental model (using syn-
thetic vision). Regier’s features are then computed on the 2-D
image. In Regier’s models, and our previous work, the per-
spective of the viewer has always remained fixed, assuming
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a first person perspective. Using the mental model, the syn-
thetic camera can be moved to any 3-D location and orientation.
Using this perspective shift operation, the semantics of my left
versus your left can be differentiated by using the word my, in
this linguistic context, as a trigger for positioning the synthetic
camera. Ripley’s proprioceptive system guides the placement
of the camera for first person perspectives, and the face-tracker
driven human model enables shifting to the human’s point of
view.

E. Spatially Situated Speech Understanding

Using the SN and projection function representation, we have
encoded a small vocabulary of words that cover verbs (pickup,
touch, etc.), names of objects (apple, beanbag, cup, etc.), and
terms for color, weight, and spatial relations. A speech recog-
nizer, parser, and semantic composition system work together
to convert commands into robot actions. Most aspects of the
lexical structures are hand coded. Only the activation functions
(e.g., color distributions associated with green, or weight distri-
butions associated with heavy) are trained from examples using
standard statistical estimation techniques.

Front end speech recognition is performed using a HMM-
based decoder [44]. The single best word sequence is passed
to a chart parser [45] which serves as the first step of a semantic
composition procedure. The composition process is presented in
detail in [46]. In brief, each lexical entry has a function interface
that specifies how it performs semantic composition. Currently,
the interface definition consists of the number and arrangement
of arguments the entry is willing to accept. Semantic type mis-
matches are handled during composition rather than being en-
forced through the interface. Each entry can contain a semantic
composer that encapsulates the actual function to combine this
entry with other constituents during a parse.

The system is able to resolve the referent of utterances with
multiple modifiers. To achieve this, virtual objects consisting
of one or more actual objects are internally generated during
semantic composition. Consider the spoken command, “Pick up
the large green cup to the left of the blue plate.” To resolve
the reference of large green cup, the innermost term, cup, is
first bound to objects in the robot’s environment based on the
visual shape models associated with the word. If multiple cups
are found, they are grouped into a virtual object. This virtual
object is then composed with the representation of green, which
will threshold and sort the contents of the virtual object based
on greenness, and pass along the new virtual object to large.
The landmark phrase blue plate is processed in the same way,
resulting in a second virtual object. The spatial phrase to the left
of is used to find the best pair of objects, one drawn from each
of the virtual objects. Finally, the best referent is passed as an
argument to the pickup SN, which actually executes the action
and picks up the target object.

The words my, your, me, and you are given special treatment
when adjacent to spatial terms, each triggering an appropriate
shift of visual perspective within Ripley’s mental model (in front
of me, to your left, etc.). Subsequent spatial terms are evaluated
in the shifted frame of reference. In this way, mental imagery
provides the grounding for deictic and intrinsic spatial language.

F. Results and Discussion

Ripley is able to interactively respond to a range of im-
perative spoken commands such as “Pick up the blue cup on
your left” and “Hand me the ball to the right of the large green
beanbag.” In cases where the referent of the command appears
ambiguous, Ripley uses a simple dialog strategy to request
further descriptive terms. When an explicit spatial frame is not
indicated through language, Ripley’s default is to imagine the
workspace from the user’s point of view, thereby interpreting
commands from a deictic frame of reference. Ripley is able
to understand commands which specify single actions to be
performed on single objects. More complex request sequences
of actions or manipulation on multiple objects is currently
beyond the scope of the system’s grammar.

In principle, Ripley can understand reference to objects that
are not in its camera’s view due to the object permanence func-
tion of the mental model. Although the physical camera may not
be directed toward a target object, the synthetic camera can be
directed at any portion of the 3-D model of the scene to ground
referring expressions. We have not yet implemented the proce-
dures for controlling synthetic vision, but the representational
capacity for performing this kind of language comprehension is
in place.

Although this application of the mental model is too prelim-
inary for formal performance analysis, three major sources of
processing errors are apparent, each suggesting a direction for
future work. First, the simplifying assumption of color-based
foreground/background separation in the low-level visual
analysis algorithms leads to significant limitations of the vision
system. To address this, a more robust segmentation process
based on contrast maps and depth imaging is being developed.
Second, several parameters in the Objecter are manually set
(distance tuning weights, confidence decay rates, etc.), leading
to sub-optimal synchronization of the model to the robot’s
environment. Instead, these parameters can be automatically
determined using machine learning techniques, once an anno-
tated set of active vision data has been collected. Third, the
speech recognizer occasionally produces errors. There are sev-
eral ways to improve robustness of speech recognition. These
include the use of acoustic confidence scores to reject poorly
recognized words, and the integration of speech processing
with contextual knowledge derived from other sensors (see [47]
for first steps in this direction).

VI. CONCLUSIONS

Our vision is to create interactive robots that can engage in co-
operative tasks with humans mediated by fluid, natural spoken
conversation. To achieve this vision, the robots must have rich
representations of the physical situations in which they are em-
bedded. These representations must be coupled to the robot’s
physical senses so that it reflects reality, and provide appropriate
interfaces for grounding natural language.

Motivated by these needs, we have developed a method for
constructing and maintaining a physical model of a robot’s
environment based on active perceptual input. The mental
model provides a representational medium that is suitable for
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grounding the semantics of referring expressions. The mental
model serves as the robot’s dynamically constructed “cache”
of the external world. Rather than tie the meaning of utterances
to first-person perspective visual representations, the mental
model provides an abstracted representational layer to interface
with natural language semantics.

Understanding relativized spatial language is only one of nu-
merous reasons for endowing Ripley with a mental model. Con-
sider, for example, how Ripley should generate referring expres-
sions to bring its human partner’s attention to an object. De-
pending on the situation, objects in view for the robot may be
occluded from the human’s perspective. If a cup is sitting behind
an obstacle, say a box, that prevents the human from seeing the
cup, it would be ineffective for Ripley to refer to the cup as just
the cup. Instead, by taking into account the human’s viewpoint,
Ripley can anticipate that the object will not be in view and in-
stead say the cup behind the box. Ripley’s mental model enables
this kind of situated language use.

Perhaps one of the most intuitive views of word meaning is
the referential theory: words get their meaning due to their cor-
respondence to events, objects, properties, and relations in the
world. Although many other critical aspects of meaning have
been raised in the philosophy of language and mind, the refer-
ential aspect of words holds firm as a crucial part of any com-
plete theory of meaning. The approach we have presented here
enables Ripley to establish meaningful correspondence between
words and world, enabling a central aspect of situated language
understanding.
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