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Abstract Robot arms driven by bi-articular and mono-

articular muscles have numerous advantages. If one muscle

is broken, the functionality of the arm is not influenced. In

addition, each joint torque is distributed to numerous

muscles, and thus the load of each muscle can be relatively

small. This paper addresses the problem of muscle control

for this kind of robot arm. A relatively mature control

method (i.e. sliding mode control) was chosen to get joint

torque first and then the joint torque was distributed to

muscle forces. The muscle force was computed based on a

Jacobian matrix between joint torque space and muscle

force space. In addition, internal forces were used to

optimize the computed muscle forces in the following

manner: not only to make sure that each muscle force is in

its force boundary, but also to make the muscles work in

the middle of their working range, which is considered best

in terms of fatigue. Besides, all the dynamic parameters

were updated in real-time. Compared with previous work, a

novel method was proposed to use prediction error to

accelerate the convergence speed of parameter. We

empirically evaluated our method for the case of bending-

stretching movements. The results clearly illustrate the

effectiveness of our method towards achieving the desired

kinetic as well as load distribution characteristics.

Keywords Muscle cooperation � Redundancy �
Internal force � Parameter adaptation

1 Introduction

1.1 Background

Traditional robot arms are driven by motors. Each motor

drives a specific joint, corresponding to an independent

degree of freedom (DOF). There are two main problems in

this approach. First, if one motor is broken, the DOF cor-

responding to this motor will be lost. Second, the motor

near the base link always needs more power, leading to a

requirement for very heavy motors near the base. But let us

compare this to the human motor system: as there are many

muscles driving one joint, the total joint torque is distrib-

uted to every muscle. Thus, each muscle only carries a

relatively small load. Furthermore, if one muscle is broken,

the function of rotation for the corresponding joint does not

change. Thus, recently such driving systems for robots

inspired by muscles have started to be explored, creating a

new research direction. For example, there are a number of

papers focusing on bionic arms [1–4]. In our work, we

propose a muscle control method for humanoid robot arm

driven by bi-articular muscles. Here, the control method is

designed to be adaptive, i.e. robust to perturbations and

disturbances from environment. In addition, the muscle

forces have to satisfy the boundary force limit. Last, but

quite importantly, the method has to be efficient enough for

practical application.

To get insight into this muscle control problem, we can

consider it through viewpoints arising from two research

fields: human motor control and robotics. In human motor

control, the human body is usually considered as a multi-

link rigid body with numerous joints. By adding muscles

and tensors, the human body moves according to control

signals arising from the neural system. Such a kind of

system is usually termed a neural-skeleton muscle system
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[5, 6] and the muscle control is described as human motor

control [7]. On the other hand, in robotics, there is also a

related research field focusing on controlling multi-link

rigid bodies [8–10].

In our research, we face two problems: redundancy and

adaptivity. For redundancy, there exist two types of

redundancies here. Type I Redundancy is between end

effector position and joints. Taking the robot arm as an

example, the number of degrees of freedom (DOF) of the

end effector position is 3, i.e., the end effector can move in

3D space. Nevertheless, the number of joints in the arm can

be more than 3, indicating the fact that for the same end

effector position, there exist many limb joint configura-

tions. The other type of redundancy, Type II Redundancy,

is between joint torque and muscle force. In the human

motor system, there are many more muscles as compared

to the minimum number required to generate the full range

of required movement [11, 12]. Towards generating a

certain desired joint torque, there is a lot of flexibility in

distributing load among the cooperating muscles. For

example, if we ask a subject to keep a certain gesture, when

the subject is under nervous status, the muscles are tense.

Both agonist muscles and antagonist muscles output large

force. At this time, the body’s impedance status is in a self-

protection mode, and the damping and viscosity coeffi-

cients are correspondingly large [13, 14]. Conversely,

when the subject is under relaxation status, the muscle

force, damping and viscosity coefficients are small. The

above two extreme statuses correspond to the same zero

joint torque with different muscle force distributions.

Ability for adaptation is also a very important issue,

especially for humanoid robots. As humanoid robots are

usually tailored towards significant human–robot interac-

tion, often their working environment is mainly a human

environment, which is very complex and always accom-

panied with various kinds of uncertainties. Furthermore,

even if we do not consider the environmental uncertainty,

and we focus on the robot itself, we still often have robot

model errors. Thus, in order to be able to create humanoids

that perform adequately under such conditions, it is nec-

essary to propose methods that have the ability to perform

real-time adaptation, for counteracting such uncertainties.

1.2 Related work

Let us start by discussing relevant work in human–robot

control, and then moving over to relevant work in robotics.

In human motor control, two of the main research direc-

tions are those focusing towards redundancy solutions and

ability for adaptation. Let us start with the first: redundancy

solution. The basic method utilized is nonlinear optimiza-

tion [15–18]. There have been many successful applica-

tions. Hogan proposed a voluntary movement principle

using dynamic optimization which minimizes the rate of

acceleration change of the limb [19]. Anderson et al. [15]

used dynamic optimization of minimum metabolic energy

expenditure to solve the motion control of walking. Manal

et al. [11] designed a nonlinear optimal controller to

develop a real-time EMG-driven virtual arm. Neptune [16]

evaluated different multivariate optimization methods in

pedaling.

The optimization method in human motor control

includes two different kinds of methods. One is forward

dynamics method which uses muscle excitations as the

inputs to calculating the corresponding body motions [12,

20]. It is a novel research in forward dynamics that

Anderson et al. [21] uses a parallel computer to calculate

the derivatives of the cost function and the constraints with

each control variable. The other is inverse dynamics

method [18]. Noninvasive measurement of body motions

(position, velocity, and acceleration of each segment) and

external forces are used as inputs to calculate muscle for-

ces. Two commercial software packages are famous based

on these two methods: AnyBody Modeling System as

inverse dynamics method [22] and OpenSim as forward

dynamics method [23].

As mentioned above, a second main research direction

focuses on adaptation ability. Although adaptation ability

based on bio-feedback has not been fully understood in

human motor control, right now the basic comprehension is

a combination control scheme of feed-forward control and

feedback control [24]. The feed-forward control corre-

sponds to the inverse dynamics [25–27]. Specifically, the

inverse dynamics are learnt (i.e., estimated) by nervous

system. Then, the feedback control uses this inverse

dynamics to provide a basic control efficiently. The feed-

back control deals with environment disturbance, load

change, and learning error of inverse dynamics, etc. It is

usually considered as a Visual Servo Feedback System

[28].

Now let us move from human motor control to

robotics. In robotics, modeling and control of multi-link

rigid body (especially manipulator control) have been

studied for years [10, 29–31]. Here, the redundancy

problem is usually considered from the viewpoint of

dynamic control [1, 32]. For Type I Redundancy problem,

considering different optimization criterion or restricted

conditions, many methods have been proposed. Yoshika-

wa [29] proposed a manipulability measure, by mini-

mizing which the arm is kept away from singularities.

Maciejewski et al. [30] used null-space vector to aid

obstacle avoidance. For Type II Redundancy problem,

there have been researches on building bionic robots to

mimic human’s movement system. Klug et al. [2]

developed a 3 DOF bionic robot arm which is controlled

by a PD controller with feed-forward compensation. The
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trajectory of the arm is optimized and adjusted for a time

and energy-optimal motion [33]. Potkonjak et al. [3] built

a humanoid robot with antagonistic drives whose con-

troller is designed by H1 loop shaping. Tahara [4] pro-

posed a simple sensor-motor control scheme as internal

force and simulated the overall stability.

The initial research on adaptation ability in robotics

comes from online system identification. The objective is

to estimate system structure and parameters in real-time.

Here, the system is considered as a black box or gray box.

By stimulating the system and creating relation between

the inputs and outputs, the parameters of the system can be

adjusted online [34]. Based on this identification idea,

many adaptive methods came out, such as robust control

[35], adaptive feedback control [36], neurofuzzy adaptive

control [37], etc. However, the adaptation ability problem

has not been considered in arm control by bi-articular

muscles.

1.3 Our solution

In this paper, we took into account the previous research in

human motor control and robotics. One of our initial

observations was that the optimization-series methods are

difficult to use in practical applications because of their

relative inefficiency and difficulty in dealing with. It is also

difficult to directly propose a muscle control method for the

robot arm as it is hard to decouple the two redundancies.

Therefore, we use a relatively mature control method (i.e.

sliding mode control) to get joint torque first and then

distribute the joint torque to muscle forces. The muscle

force was computed based on a Jacobian matrix between

joint torque space and muscle force space. In addition,

internal forces were used to optimize the computed muscle

forces in the following manner: not only to make sure that

each muscle force is in its force boundary, but also to make

the muscles work in the middle of their working range,

which is considered best in terms of fatigue. Besides, all

the dynamic parameters were updated in real-time. A novel

method was proposed to use prediction error to accelerate

the convergence speed of parameter. We empirically

evaluated our method for the case of bending-stretching

movements. The results clearly illustrate the effectiveness

of our method towards achieving the desired kinetic as well

as load distribution characteristics.

2 Modeling arm with muscles

2.1 Arm model

We built a 2-dimensional model of the arm in the hori-

zontal plane based on the upper limb structure of a digital

human. The model includes six muscles (shown as 1–6)

and two degrees of freedom (shoulder flexion–extension

and elbow flexion–extension). The range of shoulder angle

is from -20 to 100�, and the range of the elbow is from 0

to 170�. Four of the muscles are mono-articular, and two

are bi-articular where 1 and 2 cross the shoulder joint; 3

and 4 cross the elbow joint; 5 and 6 cross both joints

(Fig. 1).

Considering the arm (including upper arm and lower

arm) as a planar, two-link, articulated rigid object, the

position of hand can be derived by a 2-vector q of two

angles. The input is a 6-vector Fm of muscle forces.

The dynamics of the rigid object is strongly nonlinear.

Using the Lagrangian equations in classical dynamics,

we get the dynamic equations of the ideal upper limb

model

H11 tð Þ H12 tð Þ
H21 tð Þ H22 tð Þ

� �
€q1

€q2

� �
þ

C11 tð Þ C12 tð Þ
C21 tð Þ C22 tð Þ

� �
_q1

_q2

� �

þ
G1 tð Þ
G2 tð Þ

� �
¼

s1 tð Þ
s2 tð Þ

� �
ð1Þ

or abbreviated as

H tð Þ€qþ C tð Þ _qþ G tð Þ ¼ s ð2Þ

with q ¼ q1 q2½ �T¼ h1 h2½ �T being the two joint

angles. s ¼ s1 s2½ �T¼ f Fmð Þ is a function of muscle

force Fm

Fm ¼ Fm;1 Fm;2 Fm;3 Fm;4 Fm;5 Fm;6½ �T ð3Þ

H q; tð Þ is inertia matrix containing information with

regard to the instantaneous mass distribution. C q; _q; tð Þ is

centripetal and coriolis torques representing the moments

Fig. 1 Humanoid robot arm model. The arm has two degrees of

freedom and it can rotate around the shoulder angle and elbow angle

in the anterior plane
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of centrifugal forces. G q; tð Þ is gravitational torques

changing with the posture configuration of the arm.

H11 ¼ J1 þ J2 þ m2d2
1 þ 2m2d1c2 cos q2ð Þ

H12 ¼ H21 ¼ J2 þ m2d1c2 cos q2ð Þ
H22 ¼ J2

C11 ¼ �2m2d1c2 sin q2ð Þ _q2

C12 ¼ �m2d1c2 sin q2ð Þ _q2

C21 ¼ m2d1c2 sin q2ð Þ _q1

C22 ¼ 0

G1 ¼ g m1c1 þ m2d1ð Þ cos q1ð Þ þ gm2c2 cos q1 þ q2ð Þ
G2 ¼ gm2c2 cos q1 þ q2ð Þ; ð4Þ

where g is the acceleration of gravity. ci is the distance

from the center of a joint i to the center of the gravity point

of link i: di is the length of link i. Ji ¼ mid
2
i þ Ii where Ii is

the moment of inertia about axis through the center of mass

of link i.

2.2 Model with estimated parameters

In our research, we consider the arm model in Eq. (1) is

influenced by disturbances and perturbations from the

environment. Hence, we used an estimated arm model to

control, which is written as

Ĥ11 tð Þ Ĥ12 tð Þ
Ĥ21 tð Þ Ĥ22 tð Þ

" #
€q1

€q2

� �
þ Ĉ11 tð Þ Ĉ12 tð Þ

Ĉ21 tð Þ Ĉ22 tð Þ

" #
_q1

_q2

� �

þ Ĝ1 tð Þ
Ĝ2 tð Þ

" #
¼

ŝ1 tð Þ
ŝ2 tð Þ

� �
ð5Þ

or abbreviated as

Ĥ tð Þ€qþ Ĉ tð Þ _qþ Ĝ tð Þ ¼ ŝ; ð6Þ

where �̂ means estimated value of �ð Þ. The connection part

between ideal model (Eq. 1) and estimated model (Eq. 5)

is that we choose s ¼ ŝ. Below, we use estimated model (5)

to generate torque for real system for control. In addition,

the parameter adaptation updates the estimated parameters

Ĥ, Ĉ and Ĝ in real time.

2.3 Dynamic parameters definition

For the convenience of following derivation, we define the

actual and estimated arm parameter vector

P ¼ PT
H PT

C PT
G

� �T
; P̂ ¼ P̂T

H P̂T
C P̂T

G

� �T
; ð7Þ

where

PH ¼

H11

H12

H21

H22

2
6664

3
7775; PC ¼

C11

C12

C21

C22

2
6664

3
7775; PG ¼

G1

G2

� �
;

P̂H ¼

Ĥ11

Ĥ12

Ĥ21

Ĥ22

2
6664

3
7775; P̂C ¼

Ĉ11

Ĉ12

Ĉ21

Ĉ22

2
6664

3
7775; P̂G ¼

Ĝ1

Ĝ2

" #
ð8Þ

then the estimation error vector can be defined as

~P ¼ P̂� P ¼ ~PT
H

~PT
C

~PT
G

� �T
: ð9Þ

3 Joint torque computation

3.1 Torque control method

Sliding mode control is used to control the posture of the

arm [36]. A 2-vector qd is the desired states. Define a

sliding mode term s as

s ¼ _~qþ K~q ¼ ð _q� _qdÞ þ Kðq� qdÞ ð10Þ

where K is a positive diagonal matrix. Defining the

reference velocity _qr and reference acceleration €qr as

_qr ¼ _q� s

€qr ¼ €q� _s
ð11Þ

then we choose the control method as

s ¼ ĤðqÞ€qr þ Ĉðq; _qÞ _qr þ Ĝ� KsgnðsÞ; ð12Þ

where K is convergence parameter which is a diagonal

matrix. The proof of sliding mode control is in [38].

3.2 Parameter adaptation method

To accelerate the parameter update speed, we use two error

sources to update estimated parameters. The first source is

tracking error. We chose the parameter adaptation method

based on tracking error as

_̂Ptra ¼ �C�1 s1€qT
r s2€qT

r s1 _qT
r s2 _qT

r s1 s2

� �T
; ð13Þ

where C is adaptation parameter which is a diagonal

matrix. The derivation of this parameter adaptation method

is based on the sliding mode control method, which is

proved in [39].

On the other side, the dynamic equation (Eq. 1) can be

written in the form

s tð Þ ¼ €q1 0 €q1 0 _q1 0 _q1 0 1 0

0 €q2 0 €q2 0 _q2 0 _q2 0 1

� � PH

PC

PG

2
4

3
5:
ð14Þ
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To avoid the acceleration terms in Eq. (14), we

use filtering technique. Specifically, by multiplying

both sides of Eq. (14) with e�k t�rð Þ and integrating it, we

can get

Z t

0

e�k t�rð Þs rð Þdr ¼
Z t

0

e�k t�rð Þ

�
€q1 0 €q1 0 _q1 0 _q1 0 1 0

0 €q2 0 €q2 0 _q2 0 _q2 0 1

� �
dr

PH

PC

PG

2
64

3
75;

ð15Þ

where k and r are positive numbers. Using partial

integration, the acceleration terms on the right side can

be written as

Z t

0

e�k t�rð Þ €q1 0

0 €q2

� �
dr ¼ e�k t�rð Þ €q1 0

0 €q2

� �����
t

0

�
Z t

0

d

dr
e�k t�rð Þ _q1 0

0 _q2

� �� �
dr: ð16Þ

Therefore, Eq. (14) can be written in the form

s tð Þ ¼ S t; _q; qð ÞP ð17Þ

From this equation, s is the ‘‘output’’ of the system. S is

a signal matrix. P is a vector of real parameters. We can

predict the value of the output s based on the parameter

estimation, i.e.

ŝ ¼ SP̂ ð18Þ

Then, the prediction error e can be defined as

e ¼ ŝ� s ¼ SP̂� SP ¼ S ~P: ð19Þ

According to it, we can get the parameter adaptation

method based on prediction error, i.e.

_̂Ppre ¼ �N
o eTeð Þ

oP̂
¼ �N

o SP̂� SP
	 
T

SP̂� SP
	 
� �

oP̂
¼ �2NST SP̂� SP

	 

¼ �2NSTe ¼ �2NST ŝ� sð Þ;

ð20Þ

where N is a diagonal coefficient matrix. If we consider the

parameters change much slower with respect to the

parameter identification, from Eq. (20), we can get

_~P ¼ _̂P� _P ¼ �2NSTS ~P ð21Þ

Here, we choose a Lyapunov function candidate

V tð Þ ¼ 1

4
~PT ~P ð22Þ

then the derivative of V tð Þ is

_V tð Þ ¼ 1

2
~PT _~P ¼ 1

2
~PT �2NSTS ~P
	 


¼ �N S ~P
	 
T

S ~P
	 


� 0

ð23Þ

which means the parameter estimation converges to real

values. Therefore, according to Eqs. (13) and (20), the

overall adaptation law is

_̂P ¼ _̂Ptra þ _̂Ppre

¼ �C�1 s1€qT
r s2€qT

r s1 _qT
r s2 _qT

r s1 s2

� �T
� 2NST ŝ� sð Þ: ð24Þ

4 Muscle force distribution

4.1 Jacobian matrix between joint and muscle space

The coordinate system of the robot arm is shown in Fig. 2

where we define aij 1� i� 6; 1� j� 2ð Þ as the distance

between the muscle endpoint and center of its adjacent

joint. Define lk 1� k� 6ð Þ as the kth muscle length.

According to Sines Law and Cosines Law, we can get

l2
1 ¼ a2

11 þ a2
12 � 2a11a12 cos p� h1ð Þ

l2
2 ¼ a2

21 þ a2
22 � 2a21a22 cos h1ð Þ

l2
3 ¼ a2

31 þ a2
32 � 2a31a32 cos p� h2ð Þ

l2
4 ¼ a2

41 þ a2
42 � 2a41a42 cos h2ð Þ

ð25Þ

We constructed a right triangle to calculate l5 and l6

l2
5 ¼ a51 þ a01ð Þ2þ a52 þ a02ð Þ2�2 a51 þ a01ð Þ a52 þ a02ð Þ
� cos p� h1 � h2ð Þ

l2
6 ¼ a01 � a61ð Þ2þ a02 � a62ð Þ2�2 a01 � a61ð Þ a02 � a62ð Þ
� cos p� h1 � h2ð Þ; ð26Þ

where a01 and a02 can be obtained by Sines Law

a01 ¼
d1 sin h2ð Þ

sin h1 þ h2ð Þ ; a02 ¼
d1 sin h1ð Þ

sin h1 þ h2ð Þ ð27Þ

Fig. 2 Coordinate system. The attached positions of the muscles are

defined in the coordinate system
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After simplification, we finally get

l1 ¼ a2
11 þ a2

12 þ 2a11a12 cos h1ð Þ
	 
1=2

l2 ¼ a2
21 þ a2

22 � 2a21a22 cos h1ð Þ
	 
1=2

l3 ¼ a2
31 þ a2

32 þ 2a31a32 cos h2ð Þ
	 
1=2

l4 ¼ a2
41 þ a2

42 � 2a41a42 cos h2ð Þ
	 
1=2

l5 ¼ a51 þ a01ð Þ2þ a52 þ a02ð Þ2þ2 a51 þ a01ð Þ a52 þ a02ð Þ
�

� cos h1 þ h2ð ÞÞ1=2

l6 ¼ a01 � a61ð Þ2þ a02 � a62ð Þ2þ2 a01 � a61ð Þ a02 � a62ð Þ
�

� cos h1 þ h2ð ÞÞ1=2 ð28Þ

Assuming the kinematics between the length of muscle

and the angle of joint is given as follows

L ¼ Q Hð Þ ð29Þ

where

L ¼ l1 l2 l3 l4 l5 l6½ �T

H ¼ h1 h2½ �T
ð30Þ

then the derivative of Eq. (29) is

_L ¼ Jm
_H ð31Þ

where Jm is a Jacobian matrix between the joint space and

the muscle space. It has a format as

Jm ¼

Jm;1;1 Jm;1;2

Jm;2;1 Jm;2;2

Jm;3;1 Jm;3;2

Jm;4;1 Jm;4;2

Jm;5;1 Jm;5;2

Jm;6;1 Jm;6;2

2
6666664

3
7777775
; ð32Þ

where

Jm;1;1 ¼
�a11a12 sin h1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
11 þ 2 cos h1ð Þa11a12 þ a2

12

p

Jm;2;1 ¼
�a21a22 sin h1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
21 þ 2 cos h1ð Þa21a22 þ a2

22

p

Jm;3;2 ¼
�a31a32 sin h2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
31 þ 2 cos h2ð Þa31a32 þ a2

32

p

Jm;4;2 ¼
a41a42 sin h2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
41 þ 2 cos h2ð Þa41a42 þ a2

42

p
Jm;1;2 ¼ Jm;2;2 ¼ Jm;3;1 ¼ Jm;4;1 ¼ 0

ð33Þ

Jm;5;1, Jm;5;2, Jm;6;1 and Jm;6;2 are long equations and we

do not provide them here. The derivation of the above

Jacobian matrix can be done by Matlab Symbolic Toolbox.

4.2 Muscle force distribution

The relationship between muscle forces and joint torques

can be derived by the principle of virtual work as

s ¼ f Fmð Þ ¼ JT
mFm: ð34Þ

Hence, the inverse relation between the joint torques and

the muscle forces can be expressed as

sinv ¼ f�1 sð Þ ¼ JT
m

	 
þ
s ð35Þ

where

JT
m

	 
þ¼ Jm JT
mJm

	 
�1 ð36Þ

is pseudo-inverse matrix of JT
m. The above muscle force

distribution solution satisfies

min Fmk k
s:t: JT

mFm ¼ s
ð37Þ

which means the pseudoinverse is an optimization solution

to obtain minimums muscle distribution force. However,

the above solution does not consider physical constraints,

such as the maximum output force of muscle is limited,

muscles can only contract, etc. To involve these

constraints, we define Fin as a voluntary vector having

the same dimension with Fm which expresses the internal

forces generated by redundant muscles. Then, we can

define the internal force in Fm space, i.e.

g Finð Þ ¼ I � JT
m

	 
þ
JT

m

� �
Fin ð38Þ

where I is an identity matrix having the same dimension

with muscle space. According to Moore–Penrose pseudo-

inverse, g Finð Þ is orthogonal with the pseudo-inverse

solution. Thus, we can choose any vector as Fin. Below, we

give a gradient direction for Fin to make Fm satisfy

boundary constraints.

Here, we assume that each muscle force is limited in the

interval from Fm;i;min to Fm;i;max for 1� i� 6. Our objective

is to choose a gradient direction to make each element of

Fm;i 1� i� 6ð Þ equal or greater than Fm;i;min, and equal or

Table 1 Anthropological parameter values

Segment Upper arm Lower arm

Length (m) 0.282 0.269

Mass (kg) 1.980 1.180

MCS Pos (m) 0.163 0.123

I11 (kg m2) 0.013 0.007

I22 (kg m2) 0.004 0.001

I33 (kg m2) 0.011 0.006

The parameter setting of the arm is based on a real human data [40]

MCS Pos position of the mass center
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less than Fm;i;max. Considering the muscle fatigue, one

reasonable way is to make each output force of the muscles

to be around at the middle magnitude between Fm;i;min and

Fm;i;max. The physical meaning of this method is to dis-

tribute load to all the muscles in their proper load interval,

so that they can continue working for a longer time. Based

on these considerations, we choose a function h as

h Fmð Þ ¼
X6

j¼1

sinv;i � Fm;i;mid

Fm;i;mid � Fm;i;max

� �2

ð39Þ

where

0�Fm;i;min� sinv;i�Fm;i;max

Fm;i;mid ¼
Fm;i;min þ Fm;i;max

2

i ¼ 1; 2; . . .6 ð40Þ

then we chose Fin as the gradient of the function h, i.e.

Fin ¼ Kin

oh sinvð Þ
osinv

¼ Kinrh ¼ Kin

2 � sinv;1�Fm;1;mid

Fm;1;mid�Fm;1;max

2 � sinv;2�Fm;2;mid

Fm;2;mid�Fm;2;max

2 � sinv;3�Fm;3;mid

Fm;3;mid�Fm;3;max

2 � sinv;4�Fm;4;mid

Fm;4;mid�Fm;4;max

2 � sinv;5�Fm;5;mid

Fm;5;mid�Fm;5;max

2 � sinv;6�Fm;6;mid

Fm;6;mid�Fm;6;max

2
66666666664

3
77777777775

ð41Þ

where Kin is a scalar matrix. It is very easy to prove that the

direction of Fin points to Fm;i;mid. According to the

computation in Eqs. (35) and (41), the muscle force is

calculated as

Fm ¼ sinv þ g Finð Þ ð42Þ

The procedures to compute muscle force are concluded

as the following algorithm.

5 Bending-streching movement simulation

The performance of the proposed muscle force computa-

tion method was tested by simulation. The desired

movement is bending the upper arm and lower arm from

0 rad to p=2 rad and then stretching them back to 0 rad.

The total simulation time was 10 s.

5.1 Arm model parameter setting

The parameters of the robot arm are based on the real data

of a human upper limb. The setting of length, mass, mass

center position and inertia coefficients is shown in Table 1.

The anthropological data come from [40]. Without loss of

generality, the muscle configuration coefficients (in Eq. 28)

are set as aij ¼ 0:1m 1� i� 6; 1� j� 2ð Þ.

5.2 Computational coefficient setting

There are three groups of parameters need to set, including

the parameters for sliding mode control, the parameters for

parameter adaptation, and the parameters for muscle force

computation. These parameters are set as follows.

In this research, the control parameters are set (Eq. 12)

as

K ¼ 20 � Diag 1 1½ �ð Þ ð43Þ

the adaptation parameters (Eq. 24) are set as

C�1 ¼ 0:0015 �Diag 1 1 1 1 1 1 1 1 1 1½ �ð Þ
2N ¼ 0:001 �Diag 1 1 1 1 1 1 1 1 1 1½ �ð Þ

ð44Þ

and the muscle force computation parameters (Eq. 41) are

set as

Kin ¼ 200 � Diag 1 3 1 1 1 2½ �ð Þ ð45Þ
Fm;i;min ¼ 0; Fm;i;max ¼ 1000 1� i� 6ð Þ; ð46Þ

where Diag �ð Þ is a diagonal matrix with diagonal elements

being as �ð Þ.

5.3 Control performance

According to the bending-stretching movement, two

sinusoidal waves are set as reference signals for q1 and

Algorithm 1  Muscle force distribution

Step 1 Computing Jacobian matrix (Eq. (32)) according to Eq. (33). 

Step 2 Computing pseudoinverse matrix according to Eq. (36). 

Step 3 Computing according to Eq. (35). 

Step 4 Computing internal force according to Eq. (41). Here, comes 

from the result in Step 3.
Step 5 Computing according to Eq. (38). 

Step 6 Computing muscle force by Eq. (42) where comes from Step 3 and 

comes from Step 5.

Jm

Fin

Fin

τinv

τinv

τinv,i

g

Jm( (

( (
Fing( (

(1 ≤ i ≤ 6)

T +
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q2. The frequency of the two waves is set as 2p. Initial

states of q1 and q2 are set as zero. Based on the joint

torque coming from sliding mode control, we compute

the muscle force according to Algorithm 1. The

computed 6 muscle forces are shown in Fig. 3. All the

muscle forces are in the range of Fm;i;min;Fm;i;max

� �
for

1� i� 6ð Þ. These muscle forces are optimized to be

around Fm;i;mid.

Fig. 3 Muscle forces. Six

muscle forces are computed to

drive the arm to track the

desired motion

Fig. 4 Arm movement performance. The proposed muscle control method can drive the arm to track the desired motion accurately. a Shoulder

angle. b Elbow angle. c Tracking error of the shoulder joint. d Tracking error of the elbow joint
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These computed muscle forces are used to control the

humanoid robot arm model. The shoulder angle and elbow

angle are shown in Fig. 4a, b, respectively. Compared with

the desired trajectory, the tracking error of shoulder joint

and elbow joint is shown in Fig. 4c, d, respectively. It is

clear that the tracking performance is good. Additionally,

both the two tracking errors decrease gradually. The reason

is that the parameter update makes the estimated model

parameters to approach the real ones gradually.

5.4 Parameter adaptation

In this research, in order to test the functionality of the

designed parameter adaptation method, we set the initial

estimated model parameters Ĥ, Ĉ and Ĝ to be zero matrix

(or zero vector) at the beginning. After that the parameter

adaptation method adjusts these parameters based on the

tracking error and the prediction error. Figure 5 shows the

parameters H, Ĥ and C, Ĉ in the time interval 0; 1½ �s. We

took four snapshots of these parameters at the moment 0,

1/3, 2/3, 1 s, respectively. It is noted that the estimated

parameters do not coincide with real parameters, i.e.,

because the dynamic feature of the model is partly stimu-

lated. The more complicated the movement, the more

consistent is between the estimated parameters and real

parameters.

5.5 Animation

A humanoid robot arm is visualized by Simulink (Sim-

Mechanics Toolbox). The arm model consists of three

parts: torso, right humerus, and right ulna radius hand. The

Fig. 5 Parameter update. Four

snapshots of H; Ĥ; C, and Ĉ are

taken averagely from 0 to 1 s.

The reason for the difference of

the estimated parameter and the

real ones is that the system

dynamics has not been fully

stimulated. But this

inconsistency does not influence

the control performance. a

Snapshots of H and Ĥ. b

Snapshots of C and Ĉ
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three parts are created by 6 bones, 1 bone, and 29 bones,

respectively. The polygon files of these bones come from

SIMM. To make Simulink be able to import these poly-

gons, we converted the format of polygon files from.vtp file

to.stl file. Figure 6 shows three phases (i.e., start phase,

middle phase, and end phase) of the arm gesture change in

a bending-stretching movement cycle.

6 Conclusion

After considering the numerous advantages of bi-articular

muscles, such as robustness and potential for load distri-

bution, in this paper we addressed the analogous problem

applied not to humans, but to robots; namely, the problem

of motor control of over-actuated robot arms. In our pro-

posed solution, a relatively mature control method (i.e.

sliding mode control) was chosen to get joint torque first,

and then the joint torque was distributed to the muscle

forces. The muscle force was computed based on a Jaco-

bian matrix between joint torque space and muscle force

space. In addition, internal forces were used to optimize the

computed muscle forces towards two goals: not only to

make sure that each muscle force is in its force boundary,

but also to make the muscles work in the middle of their

working range, which is considered best in terms of fati-

gue. Besides, all the dynamic parameters were updated in

real-time. A method was also proposed to use prediction

error to accelerate the convergence speed of parameter.

Apart from designing our over-actuated arm motor control

method, we empirically evaluated it for the case of bend-

ing-stretching movements. The results clearly illustrate the

effectiveness of our method towards achieving the desired

kinetic as well as load distribution characteristics.

Fig. 6 Arm movement in the

isometric and top view. The arm

bends and stretches repeatedly.

The animation is made by

Simulink SimMechanics

Toolbox. This visual model is

consisted of three parts: torso (6

bones), right_humerus (1 bone)

and right_ulna_radius_hand (29

bones). a Start phase. b Middle

phase. c End phase
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